On certain real quadratic fields with class number $2$

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a Class Number Formula for Real Quadratic Number Fields

For an even Dirichlet character , we obtain a formula for L(1;) in terms of a sum of Dirichlet L-series evaluated at s = 2 and s = 3 and a rapidly convergent numerical series involving the central binomial coeecients. We then derive a class number formula for real quadratic number elds by taking L(s;) to be the quadratic L-series associated with these elds.

متن کامل

On the real quadratic fields with certain continued fraction expansions and fundamental units

The purpose of this paper is to investigate the real quadratic number fields $Q(sqrt{d})$ which contain the specific form of the continued fractions expansions of integral basis element  where $dequiv 2,3( mod  4)$ is a square free positive integer. Besides, the present paper deals with determining the fundamental unit$$epsilon _{d}=left(t_d+u_dsqrt{d}right) 2left.right > 1$$and  $n_d$ and $m_d...

متن کامل

Class number formula for certain imaginary quadratic fields

In this note we shall show how Carlitz in 1954 could have reached an analogue of the Voronoi congruence in the more difficult case of p≡1(mod4): h(-4p) ≡B(p+1)/2(x4)(mod p), where B(p+1)/2(x4) is the generalized Bernoulli number with x4 being the Kronecker symbol associated to the Gaussian field Q(√-4).

متن کامل

On the Class Number of Real Quadratic Fields.

* Aided by a grant from the Swiss National Foundation for Scientific Research. t Aided by a grant from the National Foundation. t The small band appearing on the dense side of b2b5 in Fig. 2 contains only 0.2% of the phages; it is not due to an error in collecting the drops, for if the phages are centrifuged again in the density gradient, these phages appear at the same density; however, after ...

متن کامل

Computation of Real Quadratic Fields with Class Number One

A rapid method for determining whether the real quadratic field Sí = S(\/D) has class number one is described. The method makes use of the infrastructure idea of Shanks to determine the regulator of .W and then uses the Generalized Riemann Hypothesis to rapidly estimate L(l, x) to the accuracy needed for determining whether or not the class number of 3£ is one. The results of running this algor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the Japan Academy, Series A, Mathematical Sciences

سال: 1991

ISSN: 0386-2194

DOI: 10.3792/pjaa.67.99